Einstein solvmanifolds: existence and non-existence questions
نویسندگان
چکیده
منابع مشابه
Higher rank Einstein solvmanifolds
In this paper we study the structure of standard Einstein solvmanifolds of arbitrary rank. Also the validity of a variational method for finding standard Einstein solvmanifolds is proved.
متن کاملOn Questions of Existence
Assume we are given a Taylor morphism η. Is it possible to describe morphisms? We show that there exists a continuous, stable and arithmetic graph. Therefore in this context, the results of [5] are highly relevant. It is essential to consider that L ′ may be left-prime.
متن کاملEinstein solvmanifolds and nilsolitons
The purpose of the present expository paper is to give an account of the recent progress and present status of the classification of solvable Lie groups admitting an Einstein left invariant Riemannian metric, the only known examples so far of noncompact Einstein homogeneous manifolds. The problem turns to be equivalent to the classification of Ricci soliton left invariant metrics on nilpotent L...
متن کاملExistence and non-existence of skew branes
A skew brane is a codimension 2 submanifold in affine space such that the tangent spaces at any two distinct points are not parallel. We show that if an oriented closed manifold has a non-zero Euler characteristic χ then it is not a skew brane; generically, the number of oppositely oriented pairs of parallel tangent spaces is not less than χ/4. We give a version of this result for immersed surf...
متن کاملOrthogonal Designs IV: Existence Questions
In [5] Raghavarao showed that if n = 2 (mod 4) and A is a {O, 1, -1} matrix satisfying AAt = (n 1) In. then n 1 = a2 b2 for a, b integers. In [4] van Lint and Seidel giving a proof modeled on a proof of the Witt cancellation theorem, proved more generally that if n is as above and A is a rational matrix satisfying AAt = kIn then k = q12 + q22 (q1, q2 E Q, the rational numbers). Consequently, if...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2010
ISSN: 0025-5831,1432-1807
DOI: 10.1007/s00208-010-0552-0